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These notes have been prepared directly based on the material in [1]. All
algorithms have been implemented with appropriate codes written for Math-
ematica 12 [2].

1 Solutions of equations in one variable

1.1 Review of results from single-variable calculus

Theorem 1.1.1. Let f : X(⊂ R)→ R, and let x0 ∈ X. Then the following
statements are equivalent.

(a) f is continuous at x0.

(b) If {xn} is a sequence in X such that xn → x, then f(xn)→ f(x).

Theorem 1.1.2. Let f : X(⊂ R) → R. If f is continuous at x0 ∈ X, then
f is continuous at x0.

Theorem 1.1.3 (Rolles’ Theorem). Suppose that f ∈ C[a, b] and f is dif-
ferentiable in (a, b). Then there exists c ∈ (a, b) such that f ′(c) = 0.

Theorem 1.1.4 (Mean Value Theorem). Suppose that f ∈ C[a, b] and f is
differentiable in (a, b). Then there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Theorem 1.1.5 (Extreme Value Theorem). If f ∈ C[a, b], then there exists
c1, c2 ∈ [a, b] such that

f(c1) ≤ f(x) ≤ f(c2), ∀x ∈ [a, b].

Theorem 1.1.6 (Intermediate Value Theorem). If f ∈ C[a, b] and K is
any number between f(a) and f(b), then there exists c ∈ (a, b) such that
f(c) = K.

Theorem 1.1.7 (Mean Value Theorem for Integrals). Suppose that f ∈
C[a, b], and g is Riemann Integrable function on [a, b] which does not change
sign in [a, b]. Then there exists c ∈ (a, b) such that∫ b

a

f(x)g(x) dx = f(c)

∫ b

a

g(x) dx.
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Theorem 1.1.8 (Taylor’s Theorem). Suppose that f ∈ Cn[a, b] such that
f (n+1) exists exists on [a, b], and let x0 ∈ [a, b]. Then for every x ∈ [a, b],
there exists ξ(x) between x0 and x with

f(x) = Pn(x) +Rn(x),

where

Pn(x) =
n∑
k=0

f (k)(x0)

k!
(x− x0)k and Rn(x) =

f (n+1)(ξ(x))

(n+ 1)!
(x− x0)n+1.

Here, Pn(x) is called the nth Taylor polynomial of f about x0 and Rn(x) is
called the remainder term associated with Pn(x).

1.2 Bisection method

Let f ∈ C[a, b] such that f has a root in [a, b].

Purpose.

Finding the root p (or solution) of an equation of the form f(x) = 0, for a
given function f .

Concept.

We iteratively bisect the given interval [a, b] into subintervals and apply the
Intermediate value theorem to determine the subinterval in which root exists,
and approximate the root at each iteration by the midpoint of this subinter-
val. This generates a sequence {pn} such that pn → p.

Method.

• Set a1 = a, b1 = b, and let p1 = (a1 + b1)/2.

• If f(p1) = 0, then p = p1, and we are done.

• If f(p1) 6= 0, then f(p1) has the same sign as either f(a1) or f(b1).

· If f(p1) and f(a1) have the same sign, then p ∈ (p1, b1). Set
a2 = p1 and b2 = b1.

· If f(p1) and f(a1) have opposite signs, then p ∈ (a1, p1). Set
a2 = a1 and b2 = p1.
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Algorithm

INPUT endpoints a, b; tolerance TOL; maximum iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 1; FA = f(a).
Step 2 While i ≤ N do Steps 3− 6.
Step 3 Set p = a+ (b− a)/2; FP = f(p).
Step 4 If FP = 0 or (b− a)/2 < TOL then

OUTPUT p;
STOP.

Step 5 Set i = i+ 1.
Step 6 If FA · FP > 0 then set a = p; FA = FP

else set b = p.
Step 7 OUTPUT (" Method failed after N_0 iterations", N0);

STOP.

Code with output

Bisection[ACC_, Iter_] := Module[{i = 1, FA, FP, p, a = 0, b = 4},

FA = Func[a];

While[i <= Iter,

p = (a + b)/2.0;

FP = Func[p];

If[FP == 0 || (b - a)/2.0 <= N[(10)^(-ACC - 1)],

Print["Root up to the desired accuracy is ",

SetAccuracy[p, ACC + 1]]; Break[],

Print["The approximation after iteration ", i, " is ", p];

i = i + 1;

If[FA*FP > 0, a = p; FA = FP, b = p];

];

];

If[i > Iter, Print["Method Failed after ", i - 1, " iterations"]];

]

Func[x_] := x^2 - 3

Bisection[4, 30]

The approximation after iteration 1 is 2.
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The approximation after iteration 2 is 1.

The approximation after iteration 3 is 1.5

The approximation after iteration 4 is 1.75

The approximation after iteration 5 is 1.625

The approximation after iteration 6 is 1.6875

The approximation after iteration 7 is 1.71875

The approximation after iteration 8 is 1.73438

The approximation after iteration 9 is 1.72656

The approximation after iteration 10 is 1.73047

The approximation after iteration 11 is 1.73242

The approximation after iteration 12 is 1.73145

The approximation after iteration 13 is 1.73193

The approximation after iteration 14 is 1.73218

The approximation after iteration 15 is 1.73206

The approximation after iteration 16 is 1.73199

The approximation after iteration 17 is 1.73203

The approximation after iteration 18 is 1.73204

Root up to the desired accuracy is 1.7320

Convergence

Theorem 1.2.1 (Convergence of Bisection method). Suppose that f ∈ C[a, b]
and f(a)f(b) < 0. Then the Bisection method generates a sequence {pn} ap-
proximating a zero p of f with

|pn − p| <
b− a

2n
, for n ≥ 1.

1.3 Fixed-Point Iteration Method

Some preliminaries

Definition 1.3.1. A fixed point of a given function f : X(⊂ R) → R is a
point p ∈ X such that f(p) = p.

Remark 1.3.2. A function f : X(⊂ R)→ R has a fixed point p ∈ X if and
only if the function g(x) = f(x)− x has a zero at p.

Theorem 1.3.3. Suppose that g : [a, b]→ [a, b] is a continuous function.
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(i) Then g has at least one fixed point in [a, b].

(ii) If in addition we assume that g′ exists on (a, b) and there exists a pos-
itive constant k < 1 such that |g′(x)| ≤ k, for all x ∈ (a, b), then g has
exactly one fixed point in [a, b].

Purpose

Approximating the fixed point p of a function g : [a, b]→ [a, b] that satisfies
the hypotheses of Theorem 1.3.3.

Concept

This method is a direct application of Theorems 1.1.1 and 1.3.3.

Method

We start with an initial approximation p0 and generate a sequence {pn} of
successive approximations by taking pn = g(pn−1), for n ≥ 1. If pn → p, then
by Theorem 1.1.1, we have

p = lim
n→∞

pn = lim
n→∞

g(pn−1) = g( lim
n→∞

pn−1) = g(p).

Algorithm

INPUT initial approx. p0; tolerance TOL; maximum iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 1.
Step 2 While i ≤ N0 do Steps 3− 6.
Step 3 Set p = g(p0).
Step 4 If |p− p0| < TOL then

OUTPUT p;
STOP.

Step 5 Set i = i+ 1.
Step 6 Set p0 = p.
Step 7 OUTPUT ("The method failed after N0 iterations", N0);

STOP.
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Code with output

(*Courtesy of Srabana Biswas and Divyasree C R*)

FPI[ACC_, Iter_] := Module[{i = 1, p, p0 = (a + b)/2.0},

While[i <= Iter,

p = Func[p0];

If[Abs[p - p0] <= N[(10)^(-ACC - 1)],

Print["Fixed point up to the desired accuracy is ",

SetAccuracy[p, ACC + 1]]; Break[],

Print["The approx value after iteration ", i, " is ", p];

i = i + 1; p0 = p

];

];

If[i > Iter, Print["Method Failed after ", i - 1, " iterations"]];

]

Func[x_] := 6^(-x); a = 0; b = 1;

FPI[2, 50]

The approx value after iteration 1 is 0.408248

The approx value after iteration 2 is 0.481195

The approx value after iteration 3 is 0.422238

The approx value after iteration 4 is 0.469283

The approx value after iteration 5 is 0.431347

The approx value after iteration 6 is 0.461686

The approx value after iteration 7 is 0.437259

The approx value after iteration 8 is 0.456822

The approx value after iteration 9 is 0.441086

The approx value after iteration 10 is 0.453699

The approx value after iteration 11 is 0.443561

The approx value after iteration 12 is 0.451692

The approx value after iteration 13 is 0.445159

The approx value after iteration 14 is 0.450401

The approx value after iteration 15 is 0.44619

The approx value after iteration 16 is 0.449569

The approx value after iteration 17 is 0.446856

The approx value after iteration 18 is 0.449033
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The approx value after iteration 19 is 0.447285

The approx value after iteration 20 is 0.448688

The approx value after iteration 21 is 0.447561

Fixed point up to the desired accuracy is 0.45

Convergence

Theorem 1.3.4. Suppose that g : [a, b]→ [a, b] is a continuous function. If g′

exists on (a, b) and there exists a positive constant k < 1 such that |g′(x)| ≤ k,
for all x ∈ (a, b), then for any p0 ∈ [a, b], the sequence {pn} defined by
pn = g(pn−1) , for n ≤ 1, converges to a unique fixed point p ∈ [a, b].

Corollary 1.3.5. If a function g satisfies the hypothesis of Theorem 1.3.4,
then the bounds for the error involved in using the pn to approximate p are
given by

|pn − p| ≤ kn max{p0 − a, b− p0}

and

pn − p| ≤
kn

1− k
|p1 − p0|, for n ≥ 1.

Remark 1.3.6. Corollary 1.3.5 implies that the rate of convergence of the
sequence {pn} is dependent on bound on the first derivative (i.e k). More
precisely, smaller k would mean faster convergence of {pn}.

So the trick is to manipulate the root-finding problem into fixed-point
problem g(x) = x that satisfies the hypothesis of Theorem 1.3.4 so that g′ is
small.

1.4 Newton-Raphson Method

Purpose

Approximating the root of a given function f ∈ C2[a, b].

Concept

We start with an initial approximation p0 such that f ′(p0) 6= 0 and use the 2nd

Taylor polynomial (as in Theorem 1.1.8) to find successive approximations.
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Method

Starting with the initial approximation p0, we obtain a sequence {pn} of
successive approximations by using the iterative formula

pn = pn−1 −
f(pn−1)

f ′(pn−1)
, for n ≥ 1.

Algorithm

INPUT initial approximation p0; tolerance TOL;
maximum iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 1.
Step 2 While i ≤ N0 do Steps 3− 6.
Step 3 Set p = p0 − f(p0)/f

′(p0).
Step 4 If |p− p0| < TOL then

OUTPUT (p);

STOP.

Step 5 Set i = i+ 1.
Step 6 Set p0 = p.
Step 7 OUTPUT ("The method failed after N0 iterations", N0);

STOP

Code with output

(*Courtesy of Koustav Mondal*)

NewtonRaphson[acc_, Iter_] := Module[{i = 1, p0 = (a + b)/2.0, p1},

While[i <= Iter,

p1 = p0 - (Func[p0]/Func’[p0]);

If[Func[p1] == 0 || Abs[p1 - p0] <= N[(10)^(-acc - 1)],

Print["Root upto desired accuracy is ",

SetAccuracy[p1, acc + 1]]; Break[],

Print["The approximation after iteration ", i, " is ", p1];

i = i + 1; p0 = p1

];

];

If[i > Iter, Print["method failed after ", i - 1, " iterations"]];

]
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Func[x_] := Sin[x] - Exp[-x]; a = 3; b = 5;

NewtonRaphson[4, 50]

The approximation after iteration 1 is 2.77997

The approximation after iteration 2 is 3.11406

The approximation after iteration 3 is 3.09638

The approximation after iteration 4 is 3.09636

Root upto desired accuracy is 3.0964

Convergence

Theorem 1.4.1. Let f ∈ C2[a, b]. If p ∈ (a, b) such that f(p) = 0 and
f ′(p) 6= 0, then there exists δ > 0 such that the Newton-Raphson method
generates a sequence {pn} converging to p, for any initially chosen approxi-
mation p0 ∈ [p0 − δ, p0 + δ].

1.5 Secant Method

Purpose

Approximating the root of a given function f ∈ C[a, b].

Concept

One of the drawbacks of the Newton-Raphson method is that it requires
the value of the derivative to be computed at each iteration. The Secant
Method uses the divided-difference formula for the derivative (of a function)
to overcome this drawback.

Method

Starting with the initial approximation p0, we obtain a sequence {pn} of
successive approximations by using the iterative formula

pn = pn−1 −
f(pn−1)(pn−1 − pn−2)
f(pn−1)− f(pn−2)

, for n ≥ 1.
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Algorithm

INPUT initial approximations p0, p1; tolerance TOL;
maximum iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 2; q0 = f(p0); q1 = f(p1).
Step 2 While i ≤ N0 do Steps 3− 6.
Step 3 Set p = p1 − q1(p1 − p0)/(q1 − q0).
Step 4 If |p− p1| < TOL then

OUTPUT (p);

STOP.

Step 5 Set i = i+ 1.
Step 6 Set p0 = p1; q0 = q1; p1 = p; q1 = f(p).
Step 7 OUTPUT ("The method failed after N0 iterations", N0);

STOP.

Code with output

(*Courtesy of R. Aswin*)

Secant[ACC_, Iter_] := Module[{i = 1, FA, FB, x, y, k, FX, FY, p, FP},

FA = Func[a]; FB = Func[b];

While[i <= Iter,

If[i == 1, x = a; y = b; FX = FA; FY = FB];

If[FY != FX, k = ((y - x)/(FY - FX))*1.0;

p = y - FY*k; FP = Func[p];

If[FP == 0 || Abs[(p - y)/2.0] <= N[10^(-ACC - 1)],

Print["The root with desired accuracy is ",SetAccuracy[p, ACC + 1]];

Break[],

Print["The approximated root after ", i, "th iteration is " , p];

i = i + 1;

x = y;

FX = FY;

y = p;

FY = FP;

]

]

];

If[i > Iter, Print["The method failed after ", i, "iterations"]];

]
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Func[x_] := x^2 - 5; a = 2; b = 3;

Secant[4, 40]

The approximated root after 1th iteration is 2.2

The approximated root after 2th iteration is 2.23077

The approximated root after 3th iteration is 2.23611

The approximated root after 4th iteration is 2.23607

The root with desired accuracy is 2.2361

1.6 Regula Falsi Method

Purpose

Approximating the root of a given function f ∈ C[a, b].

Concept

This is a variant of the Secant method in which approximations are generated
in the same manner, but it includes a test at each iteration to ensure that
the root always lies between two successive approximations.

Method

Choose initial approximations p0 and p1 so that f(p0)f(p1) < 0.

• If f(p2)f(p1) < 0, then a root lies between p1 and p2. Choose p3 as the
x-intercept joining (p1, f(p1)) and (p2, f(p2)).

• If not, choose p3 as the x-intercept of the line joining (p0, f(p0)) and
(p2, f(p2)), and then interchange the indices on p0 and p1.

Algorithm

INPUT initial approximations p0, p1; tolerance TOL; maximum N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 2; q0 = f(p0); q1 = f(p1).
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Step 2 While i ≤ N0 do Steps 3− 7.
Step 3 Set p = p1 − q1(p1 − p0)/(q1 − q0).
Step 4 If |p− p1| < TOL then

OUTPUT (p);

STOP.

Step 5 Set i = i+ 1; q = f(p)
Step 6 If qq1 < 0 then set p0 = p1; q0 = q1.
Step 7 Set p1 = p; q1 = q.
Step 8 OUTPUT (" Method failed after N0 iterations", N0);

STOP.

Code with output

(*Courtesy of Amanjit Sarma*)

RegulaFalsi[ACC_, Iter_] := Module[{i = 1, p, p0 = P0, p1 = P1},

While[i <= Iter,

p = p1 - (Func[p1]*(p1 - p0))/(Func[p1] - Func[p0]);

If[Func[p] == 0 || Abs[p - p1] <= N[(10)^(-ACC - 1)],

Print["Root up to the desired accuracy is ",

SetAccuracy[p, ACC + 1]]; Break[],

Print["The approximation after iteration ", i, " is ", p];

i = i + 1;

If[Func[p]*Func[p1] < 0, p0 = p1; Func[p0] = Func[p1]];

p1 = p;

Func[p1] = Func[p];

];

];

If[i > Iter, Print["Method Failed after ", i - 1, " iterations"]];

]

Func[x_] := Log[x - 1] + Cos[x - 1]; P0 = 1.3; P1 = 2.0;

RegulaFalsi[5, 30]

The approximation after iteration 1 is 1.52061

The approximation after iteration 2 is 1.41837

The approximation after iteration 3 is 1.40114

The approximation after iteration 4 is 1.3983

The approximation after iteration 5 is 1.39784
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The approximation after iteration 6 is 1.39776

The approximation after iteration 7 is 1.39775

The approximation after iteration 8 is 1.39775

Root up to the desired accuracy is 1.39775

1.7 Order of convergence

Definition 1.7.1. Suppose {pn} is a sequence of reals such that pn → p with
pn 6= p, for all n. If positive constants λ and α exist with

lim
n→∞

|pn+1 − p|
|pn − p|α

= λ,

then the convergence of the sequence {pn} is said to be of order α, with
asymptotic error λ. In particular:

(a) If α = 1 and λ < 1, then {pn} is said to linearly convergent.

(b) If α = 2, then {pn} is said to quadratically convergent.

Example 1.7.2. The sequence pn = (0.5)n is linearly convergent, while the
sequence (0.5)2

n−1 is quadratically convergent.

Theorem 1.7.3 (Order of convergence of FPI method). Let g : [a, b]→ [a, b]
be a continuous function. Suppose g′ is continuous on (a, b), and a positive
constant k < 1 exists with |g′(x)| ≤ k, for all x ∈ (a, b). If g′(p) 6= 0, then for
any po 6= p, the sequence {pn} defined by pn = g(pn−1, for n ≥ 1, converges
linearly to a unique fixed point.

Theorem 1.7.4. Let p be a solution to the fixed point problem x = g(x).
Suppose g′(p) = 0 and g′′ is continuous with |g′(x)| < M on an open interval
I 3 p. Then there exists a δ > 0 such that for p0 ∈ [p− δ, p+ δ], the sequence
{pn} defined by pn = g(pn−1), for n ≥ 1, converges at least quadratically to
p. Moreover, for sufficiently large n,

|pn+1 − p| <
M

2
|pn − p|2.

Theorem 1.7.5. The Newton-Raphson method converges at least quadrati-
cally.
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1.8 Aitken’s ∆2 method

Purpose

Given a sequence {pn} of approximations converging linearly to p, this method
constructs a new sequence that converges more rapidly to p.

Concept and method

We assume that pn − p, pn+1 − p, and pn+2 − p have the same sign, and for
n sufficiently large

pn+1 − p
pn − p

≈ pn+2 − p
pn+1 − p

.

We define a new sequence {p̃n} given by

p̃n = pn −
(pn+1 − pn)2

pn+1 − 2pn+1 + pn
.

If ∆pn = pn+1 − pn and ∆2pn = ∆(∆pn), for n ≥ 2, then

p̃n = pn −
(∆pn)2

∆2pn
. (1)

Convergence

Theorem 1.8.1. Given a sequence {pn} of approximations converges linearly

to p and lim
n→∞

pn+1 − p
pn − p

< 1, the Aitken’s ∆2 sequence p̃n converges faster to

p in sense that

lim
n→∞

p̃n − p
pn − p

= 0.

1.9 Steffenson’s method

Purpose

Applying the ∆2 to a linearly converging sequence of approximations ob-
tained by the fixed-point iteration method to obtain a new sequence that
converges quadratically.
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Concept and method

Let {pn} be a linear converging sequence of approximation obtained from the
fixed-point iteration method. The Steffenson’s method constructs the same
first four terms as the ∆2 method, namely:

p0, p1, p2, and p̃0.

Now we assume that p̃0 is a better approximation to p than p2. So we apply
the fixed-point iteration method to p̃0 instead of p2 to obtain the modified
sequence:

p
(0)
0 = p0, p

(0)
1 = g(p

(0)
0 ) = p1, p

(0)
2 = g(p

(0)
1 ) = p2,

p
(1)
0 = {∆2}(p(0)0 ), p

(1)
1 = g(p

(1)
0 ), p

(1)
2 = g(p

(1)
1 ),

...
...

...

Here, {∆2} indicates that Equation (1) has been used. In other words, every
third term in sequence is generated using Equation 1, while the other terms
are generated using the fixed-point iteration method.

Algorithm

INPUT initial approximation p0; tolerance TOL;
maximum iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 1.
Step 2 While i ≤ N0 do Steps 3− 6.
Step 3 Set p1 = g(p0); p2 = g(p1);

p = p0 − (p1 − p0)2/(p2 − 2p1 + p0).
Step 4 If |p− p0| < TOL then

OUTPUT (p);

STOP.

Step 5 Set i = i+ 1.
Step 6 Set p0 = p.
Step 7 OUTPUT (" Method failed after N0 iterations", N0);

STOP.
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Convergence

Theorem 1.9.1. Suppose that x = g(x) has the solution p with g(p) = 1.
If there exists a δ > 0 such that g ∈ C3[p − δ, p + δ], then the Steffensen’s
method gives quadratic convergence for any p0 ∈ [p− δ, p+ δ].

1.10 Horner’s method

Background

Definition 1.10.1. A polynomial of degree n over C is a function P : C→ C
that has the form

P (x) =
n∑
i=0

an−ix
n−i,

where the coefficients ai ∈ C and an 6= 0.

Theorem 1.10.2 (Fundamental theorem of algebra). If P (x) is a polynomial
of degree n ≥ 1 over C, then P (x) = 0 has at least one root in C.

Corollary 1.10.3. If P (x) is a polynomial of degree n ≥ 1 over C, then
there exist unique constants x1, . . . , xk ∈ C and unique integers m1, . . . ,mk

such that
k∑
i=1

mi = n and

P (x) = an

k∏
i=1

(x− xi)mi .

Corollary 1.10.4. Let P (x) and Q(x) be polynomials of degree ≤ n. If
x1, . . . , xk, where k > n, are distinct numbers with P (xi) = Q(xi), for 1 ≤
i ≤ k, then P (x) = Q(x), for all x.

Purpose

Let P (x) =
∑n

i=0 an−ix
n−i be a polynomial over reals. This method uses the

usual synthetic division to evaluate the polynomial and its derivatives at a
given x0 ∈ R.
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Concept and method

Theorem 1.10.5. Let P (x) =
∑n

i=0 an−ix
n−i be a polynomial over reals.

Define an := bn and

bk := ak + bk+1x0, for k = n− 1, n2, . . . , 1, 0.

Then b0 = P (x0). Moreover, if

Q(x) =
n−1∑
i=0

bn−ix
n−i−1,

then
P (x) = (x− x0)Q(x) + b0.

Remark 1.10.6. Since P ′(x) = Q(x), in the Newton-Raphson method, P (x)
and P ′(x) can be evaluated similarly.

Example 1.10.7. Let P (x) = 2x4 − 3x2 + 3x − 4. We wish to evaluate P
and P ′ at x0 = −2, and the next term x1 of the Newton-Raphson sequence.
By Horner’s method, we have

2 0 − 3 3 − 4

− 2 − 4 8 − 10 14

2 − 4 5 − 7 10

.

Thus, we have that

P (x) = (x+ 2)(2x3 − 4x2 + 5x− 7) and P (−2) = 10.

Moreover, by Theorem 1.10.5 and Remark 1.10.6, we know that P ′(−2) =
Q(−2). So, by applying the method once again, we obtain

2 − 4 5 − 7

− 2 − 4 16 − 42

2 − 8 21 − 49

,

from which it follows that

P ′(−2) = Q(−2) = −49.

Hence, we have that

x1 = x0 −
P (x0)

P ′(x0)
≈ 1.796.
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Algorithm

INPUT degree n; coefficients a0, a1, . . . , an of P (x); x0.
OUTPUT y = P (x0); z = P ′(x0)
Step 1 Set y = an; z = an.
Step 2 For j = n− 1, n− 2, . . . , 1

Set y = x0y + aj;
Set z = x0z + y;

Step 3 Set y = x0y + a0.
Step 4 OUTPUT(y,z);

STOP.

1.11 Müller’s method

Background

Theorem 1.11.1. Let P (x) =
∑n

i=0 an−ix
n−i be a polynomial over reals. If

z = a + bi is a complex root of P (x) of multiciplicity m, then z̄ = a − bi is
also a zero of of P (x) of multiciplicity m, and

(x2 − 2ax+ a2 + b2)m | P (x).

Purpose

Let f(x) be a polynomial over reals. This method is used for approximating
a roots of the equation f(x) = 0, particularly the complex roots.

Concept

The Müller’s method uses three initial approximations p0, p1, and p2 and
then determines the next term p3 (of the sequence of approximations) by
considering the intersection of x-axis with the parabola through (p0, f(p0)),
(p1, f(p1)), and (p2, f(p2)).

Method

The method begins by considering the quadratic polynomial

P (x) = a(x− p2)2 + b(x− p2) + c,
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where a, b, c are determined by the system of equations:

f(p0) = a(p0 − p2)2 + b(p0 − p2) + c

f(p1) = a(p1 − p2)2 + b(p1 − p2) + c

f(p2) = c

Solving for b and a, we have

b =
(p0 − p2)2[f(p1)− f(p2)]− (p1 − p2)2[f(p0)− f(p2)]

(p0 − p2)(p1 − p2)(p0 − p1)

a =
(p1 − p2)[f(p0)− f(p2)]− (p0 − p2)[f(p1)− f(p2)]

(p0 − p2)(p1 − p2)(p0 − p1)

Supplying the values of a, b, and c in the quadratic formula P (x) = 0, we
obtain

p3 = p2 −
2c

b+ sgn(b)
√
b2 − 4ac

.

Now p4 is determined by reinitializing the procedure using p1, p2 and p3.

Remark 1.11.2. If the initial approximations are all real, then successive
approximation are also real. So, in order to approximate complex roots,
one must ensure that at least one of the initial approximations is a complex
number.

Algorithm

INPUT p0, p1, p2; tolerance TOL; maximum iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set h1 = p1 − p0; h2 = p2 − p1;
δ1 = (f(p1)− f(p0))/h1; δ2 = (f(p2)− f(p1))/h2;
d = (δ2 − δ1)/(h2 + h1); i = 3.

Step 2 While i ≤ N0 do Steps 3–7.

Step 3 b = δ2 + h2d; D = (b2 − 4f(p2)d)1/2.
Step 4 If |b−D| < |b+D| then set E = b+D

else set E = b−D.

Step 5 Set h = −2f(p2)/E; p = p2 + h.
Step 6 If |h| < TOL then

OUTPUT(p);
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STOP.

Step 7 Set p0 = p1; p1 = p2; p2 = p;
h1 = p1 − p0; h2 = p2 − p1;
δ1 = (f(p1)− f(p0))/h1; δ2 = (f(p2)− f(p1))/h2;
d = (δ2 − δ1)/(h2 + h1); i = i+ 1.

Step 8 OUTPUT (" Method failed after N0 iterations", N0);

STOP.

2 Interpolation

2.1 Lagrange’s interpolating polynomial

Background

Theorem 2.1.1 (Weierstrass approximation theorem). Suppose that f ∈
C[a, b]. Then for each ε > 0, there exists a polynomial P such that

|f(x)− P (x)| < ε, for all x ∈ [a, b].

Example 2.1.2. The function f(x) = ex can be approximated by the Taylor
polynomials

Pn(x) =
n∑
k=1

xk

k!

about x0 = 0.

Remark 2.1.3. The main drawback of using the Taylor polynomials to ap-
proximate continuous functions is that the information used in approximating
is concentrated around a single point x0. Consequently, these are inaccurate
approximations.

Purpose

Given a continuous function f whose values at n+1 distinct numbers x0, . . . , xn
are known, this method constructs a polynomial of degree n that approxi-
mates f and passes through (x0, f(x0)), . . . (xn, f(xn)).

Concept and method

Definition 2.1.4. Suppose that f is a continuous function whose values at
n+1 distinct numbers x0, . . . , xn are given. Then we define the nth Lagrange
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interpolating polynomial through (x0, f(x0)), . . . (xn, f(xn)) by

Pn(x) =
n∑
k=0

f(xk)Ln,k(x),

where

Ln,k(x) =
n∏
i=0
i 6=k

(x− xi)
(xk − xi)

.

Theorem 2.1.5. Suppose that f is a continuous function whose values at n+
1 distinct numbers x0, . . . , xn are given. Then the nth Lagrange interpolating
polynomial Pn(x) through the points (xi, f(xi)) is the unique polynomial of
degree at most n such that f(xk) = P (xk), for 0 ≤ k ≤ n.

Code with output

LagIntPoly[Func_[y_], a_, b_, n_] :=

Module[{k, inputs, values, i, polycoeffs = {}, poly, LPoly},

inputs = RandomReal[{a, b}, {n + 1}];

values = Func[inputs];

Do[

poly = 1;

For[i = 1, i <= n + 1, i++,

If[i != k,

poly = poly*((x - inputs[[i]])/(inputs[[k]] - inputs[[i]]))

];

];

AppendTo[polycoeffs, poly];

, {k, Range[1, n + 1]}];

LPoly = Sum[values[[i]]*polycoeffs[[i]], {i, 1, n + 1}];

Return[LPoly];

]

In[6]:= Simplify[LagIntPoly[Sin[y], 0, 2*Pi, 4]]

Out[6]= -8.76133 + 11.2767 x - 4.58442 x^2 + 0.718955 x^3 - 0.0381436 x^4
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Convergence and error

Theorem 2.1.6 (Generalized Rolles theorem). Suppose that f ∈ C[a, b] is
n times differentiable on (a, b). If f(x) = 0 at n + 1 distinct points a =
x0 < x1 < . . . < xn ≤ b, then there exists c ∈ (x0, xn) ⊂ (a, b) such that
f (n)(c) = 0.

Theorem 2.1.7. Suppose that x0, . . . xn are distinct numbers in the interval
[a, b] and f ∈ Cn+1[a, b]. Then for each x ∈ [a, b], there exists a number
ξ(x) ∈ (a, b) such that

f(x) = Pn(x) +
f (n+1)(ξ(x))

(n+ 1)!
(x− x0) . . . (x− xn),

where P (x) is the nth Lagrange interpolating polynomial through the points
(xi, f(xi)).

2.2 Newton divided difference polynomial

Purpose

Let Pn(x) be the nth Lagrange interpolating polynomial of f whose values at
n+1 distinct numbers (or nodes) xi are given. This method uses the divided
differences of f to express Pn in the form

Pn(x) = a0 + a1(x−x0) + a2(x−x0)(x−x1) + . . .+ an(x−x0) . . . (x−xn−1).

Method

Definition 2.2.1. Suppose that f is a continuous function whose values at
n+ 1 nodes x0, . . . , xn are given.

(a) The zeroth divided difference of f with respect to the node xi, denoted
by f [xi], is defined by

f [xi] = f(xi), for 0 ≤ i ≤ n.

(b) The first divided difference of f with respect to xi, xi+1, denoted by
f [xi, xi+1], is defined by

f [xi, xi+1] =
f [xi+1]− f [xi]

xi+1 − xi
, for 0 ≤ i ≤ n− 1.

24



(c) In general, the kth divided difference of f relative to xi, xi+1, . . . , xi+k,
denoted by f [xi, xi+1] is defined by

f [xi, xi+1, . . . , xi+k] =
f [xi+1, . . . , xi+k]− f [xi, . . . , xi+k−1]

xi+k − x0
, for 0 ≤ i ≤ n−k.

This process ends with the nth divided difference

f [xi, xi+1, . . . , xi+k] =
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0
.

Theorem 2.2.2 (Newton’s divided difference formula). Let Pn(x) be the nth

Lagrange interpolating polynomial of f with nodes xi, for 0 ≤ i ≤ n. Then

Pn(x) = f [x0] +
n∑
k=1

f [x0, . . . , xk](x− x0) . . . (x− xk−1).

Theorem 2.2.3 (NDD formula for equally spaced nodes). Let Pn(x) be the
nth Lagrange interpolating polynomial of f with nodes xi, for 0 ≤ i ≤ n that
are equally spaced. Let h = xi+1− xi, for 0 ≤ i ≤ n− 1, and let x = x0 + sh.
Then

Pn(x) = f [x0] +
n∑
k=1

(
s

k

)
k!nkf [x0, . . . , xk].

Theorem 2.2.4 (Newton’s forward difference formula). Let Pn(x) be the nth

Lagrange interpolating polynomial of f with nodes xi, for 0 ≤ i ≤ n that are
equally spaced. Let h = xi+1 − xi, for 0 ≤ i ≤ n − 1, and let x = x0 + sh.
Then

Pn(x) = f(x0) +
n∑
k=1

(
s

k

)
∆kf(x0).

Definition 2.2.5. Given a sequence {pn} of numbers, we define the backward
difference ∇ by

∇pn = pn − pn−1, for n ≥ 1, and

∇kpn = ∇(∇k−1pn), for k ≥ 2.

Theorem 2.2.6 (Newton’s backward difference formula). Let Pn(x) be the
nth Lagrange interpolating polynomial of f with equally spaced nodes xi re-
ordered backwards, that is, for n ≥ i ≥ 0. Let h = xi − xi−1, for n ≥ i ≥ 1,
and let x = xn + sh. Then

Pn(x) = f(xn) +
n∑
k=1

(−1)n
(
−s
k

)
∇kf(xn).
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Theorem 2.2.7. Suppose that f ∈ Cn[a, b] and x0, . . . , xn are distinct num-
bers in [a, b]. Then there exists ξ ∈ (a, b) with

f [x0, . . . , xn] =
f (n)(ξ)

n!
.

Newton’s divided difference generation table

x f(x) 1st divided difference 2nd divided difference 3rd divided difference
x0 f [x0]

f [x0, x1]
x1 f [x1] f [x0, x1, x2]

f [x1, x2] f [x0, x1, x2, x3]
x2 f [x2] f [x1, x2, x3]

f [x2, x3]
x3 f [x3]

2.3 Hermite interpolation

Background

Definition 2.3.1. For 0 ≤ i ≤ m, let xi be a numbers in [a, b], and let mi be
a non-negative integer. Suppose that f ∈ Cm[a, b], where m = max0≤i≤nmi.
Then the osculating polynomial approximating f is the polynomial P of least
degree such that

f(xi) = P (xi) and
dkP (xi)

dxk
=
dkf(xi)

dxk
, for 0 ≤ i ≤ n and 0 ≤ k ≤ mi.

Remark 2.3.2. Let P be an osculating polynomial for f on [a, b] as in
Definition 2.3.1.

(a) deg(P ) ≤
n∑
i=1

mi + n.

(b) When n = 0, P is the mth
0 Taylor polynomial for f at x0.

(c) For each i, when mi = 0, P is the nth Lagrange Interpolating polynomial
on nodes x0, . . . , xn.
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Definition 2.3.3. Let P be an osculating polynomial for f on [a, b] as in
Definition 2.3.1. When mi = 1 for each i, then P is called the Hermite
interpolating polynomial of f .

Purpose

Suppose that f is a continuous function whose values at n+1 nodes x0, . . . , xn
are given. The goal is to provide an iterative method for generating a Hermite
polynomial approximating f .

Concept and method

Theorem 2.3.4 (Hermite polynomial). Let f ∈ C1[a, b] and x0, . . . , xn ∈
[a, b] be distinct numbers. Then the unique polynomial of least degree agreeing
with f and f ′ at x0, . . . , xn is the Hermite polynomial of degree at most 2n+1
given by

H2n+1 =
n∑
j=0

f(xj)Hn,j(x) +
n∑
j=0

f ′(xj)Ĥn,j(x),

where Ln,j is jth Lagrange coefficient polynomial of degree n,

Hn,j(x) = [1− 2(x− xj)L′n,j(xj)]L2
n,j(x) and Ĥn,j(x) = (x− xj)L2

n,j(x).

Moreover, if f ∈ C2n+2[a, b], then

f(x) = H2n+1(x) +
(x− x0)2 . . . (x− xn)2

(2n+ 2)!
f (2n+2)(ξ(x)),

for some ξ(x) ∈ (a, b).

Theorem 2.3.5 (Hermite polynomial using divided differences). F or 0 ≤
i ≤ n+ 1, let xi be n+ 1 distinct numbers at which the values of f and f ′ at
xi are given. Define a new sequence by

z2i = z2i+1 = xi, for 1 ≤ i ≤ n,

and construct the divided difference table for the zi with the additional sub-
stitution that

f [z2i, z2i+1] = f ′(z2i) = f ′(xi), for 0 ≤ i ≤ n.

Then the Hermite polynomial takes the form

H2n+1(x) = f [z0] +
2n+1∑
k=1

f [z0, . . . , zk](x− z0) . . . (x− zk−1).
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3 Matrix methods

3.1 Gauss elimination method

Purpose

Given an invertible real matrix A = (aij)n×n and b = [b1 . . . bn]T ∈ Rn, we
want to solve the system of linear equations Ax = b for x = [x1 . . . xn]T ∈ Rn.

Method

Given a system of linear equation Ax = b (as above), we form the augmented
matrix Ā = [A, b] define by

Ā :=

a11 . . . a1n | b1
...

... | ...
an1 . . . ann | bn

 .
Performing elementary row operation we reduce Ā to a matrix of the form

¯̄A :=


ã11 . . . ã1n | ã(1)(n+1)

0 ã22 ã2n | ã(2)(n+1)
...

... | ...
0 . . . 0 ãnn | ã(n)(n+1)

 .
Hence, we obtain the following solution.

xn =
a(n)(n+1)

ann

xn−1 =
a(n−1)(n+1) − a(n−1)(n)xn

a(n−1)(n−1)
...

...

xi =
a(i)(n+1) −

∑n
j=i+1 aijxj

aii
, for n− 1 ≥ i ≥ 1.

Note that the procedure fails if ãii = 0, for some i.
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3.2 Gauss elimination method with partial pivoting

Purpose

Using the diagonal elements aii as pivoting elements in the Gauss elimination
method can introduce significant roundoff errors, particularly when the pivots
aii are significantly smaller (in absolute value) when compared with other
elements in the ith column below the diagonal element.

Method (Partial pivoting)

Select an element in the same column below the diagonal that has the largest
absolute value. More specifically, we choose the smallest p ≥ k such that

|apk| = max
k≤i≤n

|aik|

and swap the kth row with the pth row.

Method (Scaled partial pivoting)

In this method, we first define a scalar factor si for each row as

si = max
1≤j≤n

|aij|.

Then we choose the least integer p with

|ap1|
sp

= max
1≤k≤n

|ak1|
sk

and swap the first row with the pth row. In a similar manner, before elimi-
nating the variable xi (through row operations), we select the smallest p ≥ i
with

|api|
sp

= max
i≤k≤n

|aki|
sk

and swap the ith row with the pth row.

3.3 Jacobi and Gauss-Siedel methods

Purpose

These are iterative methods for approximating the solution to a system of
equations Ax = b.
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Method (Jacobi)

First, we solve the ith equation in Ax = b for xi, to obtain

xi =
n∑
j=1
j 6=i

−aijxj
aii

+
bi
aii
, for 1 ≤ i ≤ n.

Then for each k ≥ 1, the kth iteration of xi is given by the formula

x
(k)
i =

1

aii

 n∑
j=1
j 6=i

(−aijx(k−1)j ) + bi

 , for 1 ≤ j ≤ n.

Method (Gauss-Siedel)

For each k ≥ 1, the kth iteration of xi is given by the formula

x
(k)
i =

1

aii

[
−

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

(aijx
(k−1)
j ) + bi

]
, for 1 ≤ i ≤ n.

3.4 Matrix norms

Definition 3.4.1. A matrix norm on Mn(R) is a function

‖ · ‖ : Mn(R)→ R

satisfying the following properties for all matrices A,B ∈ Mn(R) and all
α ∈ R.

(a) ‖A‖ ≥ 0.

(b) ‖A‖ = 0 ⇐⇒ A = On.

(c) ‖αA‖ = |α|‖A‖.

(d) ‖A+B‖ ≤ ‖A‖+ ‖B‖.

(e) ‖AB‖ ≤ ‖A‖‖B‖.

30



Theorem 3.4.2. If ‖ · ‖ is a vector norm in Rn, then

‖A‖ = max
‖x‖=1

‖Ax‖

is a matrix norm.

The matrix norm induced by a vector norm as in Theorem 3.4.2 is called a
induced matrix norm.

Corollary 3.4.3. For any vector v 6= 0 and A ∈Mn(R), we have

‖Av‖ ≤ ‖A‖ · ‖v‖.

Definition 3.4.4. The `p and `∞ norms of a vector x = (x1, . . . , xn) ∈ Rn

are defined by

‖x‖p =

(
n∑
i=1

xpi

)1/p

and ‖x‖∞ = max
1≤i≤n

|xi|.

Theorem 3.4.5. For each x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn, we
have

|x · y| ≤ ‖x‖2 ‖y‖2.

Theorem 3.4.6. For any A ∈Mn(R), we have

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij|.

Definition 3.4.7. The spectral radius ρ(A) of a matrix A is defined by

ρ(A) = max{|λ| : λ is an eigenvalue of A}.

Theorem 3.4.8. If A ∈Mn(R), then

(i) ‖A‖2 = [ρ(ATA)]1/2, and

(ii) ρ(A) ≤ ‖A‖, for any induced matrix norm ‖ · ‖.

Definition 3.4.9. A matrix A ∈Mn(R) is said to be convergent if

lim
k→∞

Ak = On.
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Theorem 3.4.10. Let A ∈Mn(R). Then the following statements are equiv-
alent.

(i) A is a convergent.

(ii) lim
k→∞
‖Ak‖ = 0, for some induced matrix norm ‖ · ‖.

(iii) lim
k→∞
‖Ak‖ = 0, for all induced matrix norms ‖ · ‖.

(iv) ρ(A) < 1.

(v) lim
k→∞

Akx = 0, for every x ∈ Rn.

3.5 Successive over-relaxation (SOR) method

Definition 3.5.1. Suppose x̃ ∈ Rn is an approximate solute of the linear
system Ax = b. Then residual vector for x̃ with respect to this system is
r = b− Ax̃.

Purpose

In iterative methods such Jacobi and Gauss-Siedel methods, a residual vector
is associate with each iteration (of a component) of the solution vector x. We
want to generate a sequence of approximations that will cause the residual
vectors to converge rapidly to zero.

Method

Let D, U and L denote the n×n matrices obtained by replacing the diagonal,
upper-triangular, and lower triangular entries of the matrix On with the
corresponding entries of matrix A. The SOR method has the form

x(k) = Tωx
(k−1) + cω, where 1 < ω < 2,

Tω = (D − ωL)−1[(1− ω)D + ωU ] and cω = ω(D − ωL)−1b.

Convergence

Theorem 3.5.2. If aii 6= 0 for all i, then ρ(Tω) ≥ |ω− 1|. Consequently, the
SOR method converges only if 0 < ω < 2.
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3.6 Power method

Let A ∈Mn(R) be a matrix with n eigenvalues λ1, . . . , λn such that

|λ1| > |λ2| ≥ . . . ≥ |λn|

with an associated collection of linearly independent eigenvectors {v1, . . . , vn}.

Purpose

This is an iterative technique to estimate the dominant eigenvalue λ1 of the
matrix A and also estimate an eigenvector for λ1.

Method

We begin by choosing a unit vector x(0) relative to the ‖ · ‖∞ norm and a

component x
(0)
p0 of x(0) with

x(0)p0 = 1 = ‖x(0)‖∞.

For m ≥ 1, we define sequences of vectors {x(m)}∞m=0 and {y(m)}∞m=1, and
a sequence of scalars {µ(m)}∞m=1 inductively by

y(m) = Ax(m−1),

µ(m) = y(m)
pm−1

,

x(m) =
y(m)

y
(m)
pm

=
Amx(0)

m∏
k=1

y(k)pk

,

where at each step, pm is used to represent the smallest integer for which

|y(m)
pm | = ‖y

(m)‖∞.

Note that
lim
m→∞

µ(m) = λ1 and lim
m→∞

x(m) = w,

where w is an eigenvector associated with λ1.
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3.7 Housholder’s method

Background

Definition 3.7.1. Let w ∈ Rn with wTw = 1. Then the n× n matrix

Pw = In − 2wwT

is called a Householder’s transformation.

Theorem 3.7.2. A Householder’s transformation Pw = In − 2wwT is both
symmetric and orthogonal. Consequently, Pw = P−1w .

Purpose

This method is used is used to find a symmetric tridiagonal matrix that is
similar to a given symmetric matrix A ∈Mn(R).

Method

• Let P (1) = Pw(1) , where w(1) = (w1, . . . , wn) with

α = −sgn(a21)

(
n∑
j=2

a2j1

)1/2

,

r =

(
1

2
α(α− a21)

)1/2

,

w1 = 0,

w2 =
a21 − α

2r
, and

wj =
aj1
2r
, for 3 ≤ j ≤ n.

With this choice, we define

A(2) = P (1)AP (1).
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• This process is repeated for 2 ≤ k ≤ n− 2 as follows:

α = −sgn(a
(k)
(k+1)k)

(
n∑

j=k+1

(a
(k)
jk )2

)1/2

,

r =

(
1

2
α(α− a(k)(k+1)k)

)1/2

,

w
(k)
1 = w

(k)
2 = . . . = w

(k)
k = 0,

w
(k)
k+1 =

a
(k)
(k+1)k − α

2r
,

w
(k)
j =

a
(k)
jk

2r
, for k + 2 ≤ j ≤ n,

P (k) = In − 2w(k)(w(k))T , and

A(k+1) = P (k)A(k)P (k).

• Continuing in this manner, the tridiagonal symmetric matrix A(n−1) is
formed, where

A(n−1) = P (n−2) . . . P (1)AP (1) . . . P (n−2).

3.8 QR Algorithm

Without loss of generality, the method assumes (after application of House-
holder’s method) that the matrix A is a tridiagonal matrix whose diagonal
and off-diagonal entries are given by:

[a11 a22 . . . ann] = [a1 a2 . . . an] and

[a12 a23 . . . a(n−1)n] = [a21 a32 . . . an(n−1)] = [b2 b3 . . . bn],

respectively.

Purpose

This is a reduction technique to determine all eigenvalues of a symmetric
matrix A simultaneously.
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Method

Assuming that bj 6= 0 for any j, the QR method proceeds by forming a
sequence A = A(1), A(2), . . . as follows.

• The matrix A(1) = A is factored as A(1) = Q(1)R(1), where Q(1) is
orthogonal and R(1) is upper-triangular.

• The matrix A(2) = R(1)Q(1).

• In general, A(i) = Q(i)R(i) where Q(i) is orthogonal and R(i) is upper-
triangular, and A(i+1) = R(i)Q(i).

• As A(i+1) is tridiagonal and similar to A(i), it has the same eigenvalues
as A. Proceeding inductively, A(i+1) tends to a diagonal matrix whose
diagonal entries are the eigenvalues of A.

Construction of the Q(i) and the R(i)

Definition 3.8.1. A rotation matrix P ijθ = (prs)n×n differs from the identity
matrix in at most four elements. These four elements are of the form

pii = pjj = cos(θ) and pij = −pji = sin(θ),

for some θ and some i 6= j.

Remark 3.8.2. A rotation P ijθ has the following properties.

(a) The matrix AP ijθ (resp. P ijθ A) differs from A only in the ith and jth

columns (resp.

(b) For any i 6= j, the angle θ can be chosen so that the product (P ijθ A)ij = 0.

(c) P ijθ is orthogonal.

The construction the Q(i) and the R(i) follows these steps:

• First, the factorization of A = A(1) as a product A(1) = Q(1)R(1) uses
n− 1 rotation matrices

R(1) = PnPn−1 . . . P2A
(1),

where the Pi are rotation matrices are chosen in the following manner.
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1. Choose P2 = P12
θ2

, where θ2 = arctan(b2/a1), and let

A
(1)
2 = P2A

(1).

Note that (A
(1)
2 )21 = 0.

2. In general, Pk is chosen so that the (k, k − 1) entry in

A
(1)
k = PkA

(1)
k−1

is zero, which would imply that the (k−1, k+1) entry is nonzero.

3. Let (A
(1)
k )kk = xk and (A

(1)
k )(k+1)k = bk+1. Choose Pk+1 = Pk(k+1)

θk
with θk = arctan(bk+1/xk), and let

A
(1)
k+1 = Pk+1A

(1)
k .

Note that (A
(1)
k+1)(k+1)k = 0.

4. Proceeding in the manner in the sequence P2, . . . , Pn produces the
upper triangular matrix

R(1) = A(1)
n .

Moreover, the other half of the QR factorization is

Q(1) = P T
2 . . . P

T
n ,

as Q(1)R(1) = A(1). Note that Q(1) is orthogonal.

5. Finally, we define A(2) = R(1)Q(1) and proceed to the next itera-
tion.

4 Numerical integration

4.1 Trapezoidal and Simpson’s rules

Background

Theorem 4.1.1 (Quadrature formula). Let {x0, . . . , xn} be distinct nodes
from an interval [a, b], and let f be Riemann integrable on [a, b]. Then∫ b

a

f(x) dx =
n∑
i=0

aif(xi) +
1

(n+ 1)!

∫ b

a

n∏
i=0

(x− xi)f (n+1)(ξ(x)) dx,
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where ξ(x) ∈ [a, b] for each x and for 1 ≤ i ≤ n,

ai =

∫ b

a

Li(x) dx.

Purpose

To find an approximation to the integral
∫ b
a
f(x) dx.

Method

Corollary 4.1.2 (Trapezoidal rule). Substituting n = 1, x0 = a, x1 = b and
h = b−a in quadrature formula in Theorem 4.1.1, yields the Trapezoidal rule
given by: ∫ b

a

f(x) dx =
h

2
[f(x0) + f(x1)]−

h3

12
f ′′(ξ),

where ξ ∈ (x0, x1).

Corollary 4.1.3 (Simpson’s rule). Substituting n = 2, x0 = a, x1 = a + h,
x2 = b and h = (b− a)/2 in quadrature formula in Theorem 4.1.1, yields the
Simpson’s rule given by:∫ b

a

f(x) dx =
h

3
[f(x0) + 4f(x1) + f(x2)]−

h5

90
f (4)(ξ),

where ξ ∈ (x0, x2)

4.2 Closed Newton-Cotes formula

Purpose

Gives a generalized formula for equally spaced nodes in [a, b].

Method

Corollary 4.2.1 (Closed Newton-Cotes formula). Substituting x0 = a, xi =
a+ ih, for 1 ≤ i ≤ n− 1, xn = b and h = (b− a)/n in quadrature formula in
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Theorem 4.1.1, yields the (n + 1)-point closed Newton-Cotes formula given
by: ∫ b

a

f(x) dx ≈
n∑
i=0

aif(xi),

where

ai =

∫ b

a

Li(x) dx =

∫ xn

x0

n∏
j=0
j 6=i

(x− xj)
(xi − xj)

dx.

Theorem 4.2.2. Suppose that
∑n

i=0 aif(xi) denotes the (n+ 1)-point closed
Newton-Cotes formula as in Corollary 4.2.1. Then there exists ξ ∈ (a, b) for
which∫ b

a

f(x) dx =
n∑
i=0

aif(xi) + hn+3f
(n+2)(ξ)

(n+ 2)!

∫ n

0

t2(t− 1) . . . (t− n) dt,

if n is even and f ∈ Cn+2[a, b], and∫ b

a

f(x) dx =
n∑
i=0

aif(xi) + hn+2f
(n+1)(ξ)

(n+ 1)!

∫ n

0

t(t− 1) . . . (t− n) dt,

if n is odd and f ∈ Cn+1[a, b].

Note that the Newton-Cotes formula in Corollary 4.2.1 for n = 1 (resp.
n = 2) yields the Trapezoidal (resp. Simpson’s) rule.

Corollary 4.2.3 (Simpson’s (3/8)th rule). The Newton-Cotes formula for
n = 3 yields the Simpson’s (3/8)th rule given by:∫ b

a

f(x) dx =
3h

8
[f(x0) + 3f(x1) + 3f(x2) + f(x3)]−

3h5

80
f (4)(ξ).

4.3 Gaussian quadrature

Purpose

Chooses nodes for evaluation in an optimal rather an equally spaced way
using the roots of the Legendre polynomials to approximate

∫ 1

−1 f(x) dx.
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Background

Definition 4.3.1. For n ≥ 0, the nth Legendre polynomial Pn(x) is a monic
polynomial of degree n that satisfies the the condition∫ 1

−1
P (x)Pn(x) dx = 0,

for every polynomial P (x) of degree < n.

Remark 4.3.2. For n ≥ 1, the polynomial Pn(x) has n distinct roots in
(−1, 1) that are symmetric about the origin. The first five Legendre polyno-
mials are

P0(x) = 1,

P1(x) = x,

P2(x) = x2 − 1

3
,

P4(x) = x3 − 3

5
x, and

P5(x) = x4 − 6

7
x2 +

3

35
.

Theorem 4.3.3. Suppose that rn1, rn2, . . . , rnn are the roots of Pn(x) and
that for each 1 ≤ i ≤ n, the number cni are defined by

cni =

∫ 1

−1

n∏
j=0
j 6=i

(x− xj)
(xi − xj)

dx. (∗)

If P (x) is any polynomial of degree less than 2n, then∫ 1

−1
P (x) dx =

n∑
i=1

cniP (xi).

Method

For k ≥ 1, let {rk1, . . . , rkk} be the roots of Pk(x) in (−1, 1) and {ck1, . . . , ckk}
be the coefficients appearing in (∗) of Theorem 4.3.3. Then Gaussian quadra-

ture with n = k nodes yields an approximation to
∫ 1

−1 f(x) dx given by∫ 1

−1
f(x) dx ≈

k∑
i=1

ckif(rki).
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